Validated Solutions of Saddle Point Linear Systems
نویسندگان
چکیده
منابع مشابه
Validated Solutions of Saddle Point Linear Systems
We propose a fast verification method for saddle point linear systems where the (1,1) block is singular. The proposed verification method is based on an algebraic analysis of a block diagonal preconditioner and rounding mode controlled computations. Numerical comparison of several verification methods with various block diagonal preconditioners is given.
متن کاملRegularized HSS Iteration Method for Saddle - Point Linear Systems
We propose a class of regularized Hermitian and skew-Hermitian splitting methods for the solution of large, sparse linear systems in saddle-point form. These methods can be used as stationary iterative solvers or as preconditioners for Krylov subspace methods. We establish unconditional convergence of the stationary iterations and we examine the spectral properties of the corresponding precondi...
متن کاملA Saddle Point Theorem for Self-dual Linear Systems
Let A be a skew matrix of order n over an ordered field. There Is a finite class of skew matrices A such that XA = Y and XA = Y have the same solution sets, where x = y. and y = x for some Indices 1 (perhaps none) and x = x , y = y for the remaining 1 . We show that for each Index h, 1 < h < n, there exists an A such that ä > 0 for all J . A proof of von Neumann's Mlnlmax Theorem for symmetric ...
متن کاملRegularized HSS iteration methods for saddle-point linear systems
We propose a class of regularized Hermitian and skew-Hermitian splitting methods for the solution of large, sparse linear systems in saddle-point form. These methods can be used as stationary iterative solvers or as preconditioners for Krylov subspacemethods.We establish unconditional convergence of the stationary iterations and we examine the spectral properties of the corresponding preconditi...
متن کاملAugmented Lagrangian Techniques for Solving Saddle Point Linear Systems
We perform an algebraic analysis of a generalization of the augmented Lagrangian method for solution of saddle point linear systems. It is shown that in cases where the (1,1) block is singular, specifically semidefinite, a low-rank perturbation that minimizes the condition number of the perturbed matrix while maintaining sparsity is an effective approach. The vectors used for generating the per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2009
ISSN: 0895-4798,1095-7162
DOI: 10.1137/070706441